EnviroLink Forum

Community • Ecology • Connection
It is currently Thu Sep 18, 2014 3:47 am

All times are UTC - 5 hours [ DST ]




Post new topic Reply to topic  [ 155 posts ]  Go to page Previous  1, 2, 3, 4, 5, 6, 7, 8 ... 11  Next
Author Message
PostPosted: Sun May 27, 2012 1:57 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Wayne Stollings wrote:
Yet solar output is relatively steady and has not tracked the temperature increases.


I assume that you are talking about over the last 40 years because of the PMOD/ACRIM controversy.

ACRIM shows a statistically significant increase in TSI from 1986-1996, IRMB shows a statistically insignificant increase, and PMOD does not, making attribution very difficult.

Fortunately, there are other variables that we can use to quantify what the sun was doing over the last 40 years.

Solar Cycle 22 ran more solar flux than solar cycle 21 did:

Image

Solar Cycle 22 was also shorter than Solar Cycle 21:

Image

GCRs also reached an all time record low in 1992, (even lower than Solar Cycle 19, which had an all time high in the SSN) supporting increased solar activity during the late-20th Century.

Image

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
PostPosted: Sun May 27, 2012 1:58 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
I will have more papers later.

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
 Post subject: More papers
PostPosted: Sun May 27, 2012 4:19 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Humans have had more of an impact on climate change over the last 40 years than they have had over the last 150 years. This is primarily due to the sharp increase in Greenhouse Gas concentrations over the last 40 or so years. This means that not all of the warming over the last 40 years can be ascribed to natural causes.

With this in mind, we can start with Borie and Thoyaib 2006.

The abstract reads:

Data for geomagnetic activity index aa and solar sunspot number Rz for 1868-2004 were subjected to
correlation analysis with the global surface temperature (GST). The annual-means GT show that it had
two warming phases and one cooling period. Observations of the Earth's near-surface temperature
showed a global-mean temperature increase of approximately 1.1° C since 1877, occurred from 1887 to
1940 and from 1970 to the 1998. The temperature change over the past 35 years (1970-2004) is unlikely
to be entirely due to internal climate variability.
Attribution of the warming early in the century has
proved more elusive. The correlation analysis between the variation of global temperature and both aa
geomagnetics and solar activity are +0.5 ± 0.05, for any lag or lead, indicating a significant role in such
variation.
All graphs have illustrated strong correlations between the solar activity and geomagnetics
and surface global temperature. Our results do not, by any means, rule out the existence of important
links between solar activity and terrestrial climate. Our results displayed that the present changes in aa
geomagnetics may reflect partially some future changes in the global surface temperatures
.


From the conclusions:

The excess of aa geomagnetics led to excess
solar energy which stored and accumulated for few future
years in the near-Earth system, leading to the global
temperature variability. The running coefficients for the
late years (1873-1930) displayed only negative
remarkable role of solar activity or/and aa geomagnetic in
global temperature change (Figure 5b). On contrast, the
aa index and the sunspot number played, direct or
indirect, a great role in global cooling temperature
throughout four decades from 1931 to 1970. During the
period 1971-1998, the correlation between Rz and
temperature persisted positively. So, the sensitivity of
global temperature to aa geomagnetics is significant and
may be real
.


Mufti and Shah 2011

The abstract and key points read:


A long uninterrupted homogeneous data set on the annual mean Sea Surface Temperature (SST) anomaly records as a representative of the Earth's climatic parameter has been analyzed in conjunction with 158 year long time series on the annual sunspot indices, Rz and geomagnetic activity indices, aa for the period 1850–2007. The 11-year and 23-year overlapping means of global (δtg) as well as northern (δtn) and southern (δts) hemispheric SST anomalies reveal significant positive correlation with both Rz and aa indices. Rz, aa and δtg depict a similar trend in their long-term variation and both seem to be on increase after attaining a minimum in the early 20th century (∼1905). Whereas the results on the power spectrum analysis by the Multi-Taper Method (MTM) on δtg, Rz and aa reveal periodicities of ∼79–80 years (Gleissberg's cycle) and ∼9–11 years (Schwabe solar cycle) consistent with earlier findings, MTM spectrum analysis also reveals fast cycles of 3–5 years. A period of ∼4.2 years in aa at 99% confidence level appears recorded in δtg at ∼4.3 years at 90% confidence level. A period of ∼3.6–3.7 years at 99% confidence level found in δtg is correlating with a similar periodic variation in sector structure of Interplanetary Magnetic Field (IMF). This fast cycle parallelism is new and is supportive of a possible link between the solar-modulated geomagnetic activity and Earth's climatic parameter i.e. SST.

--------------------------------------------------------------------------------


Research highlights


► Instrumental records of temperature anomalies analyzed in conjunction with sunspot, Rz and geomagnetic, aa indices. ► Significant positive correlation exists between Rz and aa when they are referred to long-term trends. ► Besides the 79 year and 11 year cycle the present investigation has also revealed fast cycle periods of 3–5 years in SST and aa. ► Geomagnetic activity could be a possible link through which solar activity may influence the Earth's climate. ► The Sun has a significant role to play in the long-term and short-term climate change.


Raspopov et. al 2007 Found that long term trends in solar activity can create SIGNIFICANT temperature changes. A substantial lag can also occur with the sun and the temperature on the Earth, which would refute your earlier logic that just because the sun's irradiance according to PMOD has flatlined, does not bmean that it has not contributed to the recent warming. They also find that recent warming from 1945-2003 matches with expected predictions from a long term increase in solar activity.

From the abstract:

The influence of ∼200-year solar activity variations (de Vries cyclicity) on climatic parameters has been analyzed. Analysis of palaeoclimatic data from different regions of the Earth for the last millennium has shown that ∼200-year variations in solar activity give rise to a pronounced climatic response. Owing to a nonlinear character of the processes in the atmosphere–ocean system and the inertia of this system, the climatic response to the global influence of solar activity variations has been found to have a regional character. The regions where the climatic response to long-term solar activity variations is stable and the regions where the climatic response is unstable, both in time and space, have been revealed. It has also been found that a considerable lag of the climatic response and reversal of its sign with respect to the solar signal can occur. Comparison of the obtained results with the simulation predictions of the atmosphere–ocean system response to long-term solar irradiance variations (T > 40 years) has shown that there is a good agreement between experimental and simulation results.

Image

Fig. 2. (a) Results of simulation of the spatial distribution of surface temperatures when the atmosphere–ocean system is affected by long-term solar irradiance variations (T > 40 years) (Waple et al., 2002). The asterisk (the North Atlantic region) and crosses show the sites the climatic data for which were used in our paper; (b) variations in annual average temperatures in the Northern Hemisphere for 1954–2003.

The sun's activity began to rise in 1900, according to this paper also by OM Raspopov et. al.

Which Raspopov and Dergachev found was a 'controlling factor' in 20th Century warming.

Yu 2002 found that great uncertainties still remain with GCRs and climate, and more research needs to be done to quantify these uncertainties.

Kilcik 2005

It is a clear fact that the Earth's climate has been changing since the pre-industrial era, especially during the last three decades. This change is generally attributed to three main factors: greenhouse gases (GHGs), aerosols, and solar activity changes. However, these factors are not all-independent. Furthermore, contributions of the above-mentioned factors are still disputed.We sought whether a parallelism between the solar activity variations and the changes in the Earth's climate can be established. For this, we compared the solar irradiance model data reconstructed by J. Lean to surface air temperature variations of two countries: USA and Japan. Comparison was carried out in two categories: correlations and periodicities. We utilized data from a total of 60 stations, 18 in USA and 42 in Japan. USA data range from 1900 to 1995, while Japan data range from 1900 to 1990.

Our analyses yielded a 42 per cent correlation for USA and a 79 per cent for Japan between the temperature and solar irradiance. Moreover, both data sets showed similar periodicities. Hence, our results indicate marked influence of solar activity variations on the Earth's climate.


Kilcik et. al 2010

By applying multitaper methods and Pearson test on the surface air temperature and flare index used as a proxy data for possible solar sources of climate-forcing, we investigated the signature of these variables on middle and high latitudes of the Atlantic–Eurasian region (Turkey, Finland, Romania, Ukraine, Cyprus, Israel, Lithuania, and European part of Russia). We considered the temperature and flare index data for the period ranging from January 1975 to the end of December 2005, which covers almost three solar cycles, 21st, 22nd, and 23rd.

We found significant correlations between solar activity and surface air temperature over the 50–60° and 60–70° zones for cycle 22, and for cycle 23, over the 30–40°, 40–50°, and 50–60° zones.

The most pronounced power peaks for surface air temperature found by multitaper method are around 1.2, 1.7, and 2.5 years which were reported earlier for some solar activity indicators. These results support the suggestion that there is signature of solar activity effect on surface air temperature of mid-latitudes.


Image

Fig. 1. Eleven year running mean sunspot numbers and departures of sea surface temperatures from the long term mean (units hundredths of a degree Celsius). The coherency between the solar activity and climate records can be seen in this figure comparing polynomial fits to the sunspot record and the global mean sea-surface temperature SST (Reid, 1999).

In Figure 4 of Dorman 2012, it can be seen that GCRs can explain pretty much all temperature variability from 1937-1994.

Carslaw et. al 2002

This paper shows that there is a long term decrease in GCRs over the 20th Century, which would correspond to a more active sun, as this would mean that there would be more solar wind to prevent GCRs from reaching Earth. It is also shown that in 1992, a record low in GCRs was recorded, indicating record high amounts of solar activity occured during the late-20th Century.

Image

Soon et. al 2011:

(From the abstract:)

The 20th century surface air temperature (SAT) records of China from various sources are analyzed using data which include the recently released Twentieth Century Reanalysis Project dataset. Two key features of the Chinese records are confirmed: (1) significant 1920s and 1940s warming in the temperature records, and (2) evidence for a persistent multidecadal modulation of the Chinese surface temperature records in co-variations with both incoming solar radiation at the top of the atmosphere as well as the modulated solar radiation reaching ground surface. New evidence is presented for this Sun–climate link for the instrumental record from 1880 to 2002. Additionally, two non-local physical aspects of solar radiation-induced modulation of the Chinese SAT record are documented and discussed.

Teleconnections that provide a persistent and systematic modulation of the temperature response of the Tibetan Plateau and/or the tropospheric air column above the Eurasian continent (e.g., 30°N–70°N; 0°–120°E) are described. These teleconnections may originate from the solar irradiance-Arctic–North Atlantic overturning circulation mechanism proposed by Soon (2009). Also considered is the modulation of large-scale land–sea thermal contrasts both in terms of meridional and zonal gradients between the subtropical western Pacific and mid-latitude North Pacific and the continental landmass of China. The Circum-global teleconnection (CGT) pattern of summer circulation of Ding and Wang (2005) provides a physical framework for study of the Sun–climate connection over East Asia. Our results highlight the importance of solar radiation reaching the ground and the concomitant importance of changes in atmospheric transparency or cloudiness or both in motivating a true physical explanation of any Sun–climate connection. We conclude that ground surface solar radiation is an important modulating factor for Chinese SAT changes on multidecadal to centennial timescales. Therefore, a comprehensive view of local and remote factors of climate change in China must take account of this as well as other natural and anthropogenic forcings.


Tinsley et. al 2009 find that the CRF (Cosmic Ray Forcing) is a likely climate driver, and find that it needs to be represented in the models, since it has a very important role in climate change.

Belov et. al 2005

A method of prediction of expected part of global climate change caused by cosmic ray (CR) by forecasting of galactic cosmic ray intensity time variation in near future based on solar activity data prediction and determined parameters of convection-diffusion and drift mechanisms is presented. This gave possibility to make prediction of expected part of global climate change, caused by long-term cosmic ray intensity variation. In this paper, we use the model of cosmic ray modulation in the Heliosphere, which considers a relation between long-term cosmic ray variations with parameters of the solar magnetic field. The later now can be predicted with good accuracy. By using this prediction, the expected cosmic ray variations in the near Earth space also can be estimated with a good accuracy. It is shown that there are two possibilities: (1) to predict cosmic ray intensity for 1–6 months by using a delay of long-term cosmic ray variations relatively to effects of the solar activity and (2) to predict cosmic ray intensity for the next solar cycle. For the second case, the prediction of the global solar magnetic field characteristics is crucial. For both cases, reliable long-term cosmic ray and solar activity data as well as solar magnetic field are necessary. For solar magnetic field, we used results of two magnetographs (from Stanford and Kitt Peak Observatories). The obtained forecasting of long-term cosmic ray intensity variation we use for estimation of the part of global climate change caused by cosmic ray intensity changing (influenced on global cloudiness covering).

Climate Change can be forecasted based off of the predictions for the GCR Flux. Given how closely the model represents reality as shown in Figure 3, it is hard to discount their predictions of cooling in the near future due to an increasing GCR Flux.

In my next post I will have a compliation of peer reviewed papers that predict a cooling in the next couple to few decades.

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
PostPosted: Sun May 27, 2012 4:48 pm 
Offline
EnviroLink Volunteer
EnviroLink Volunteer
User avatar

Joined: Thu Jun 26, 2003 10:45 pm
Posts: 20531
Location: Southeastern US
Snowy123 wrote:
Wayne Stollings wrote:
The "expansion" of what the paper actually said on a subject not covered by the focus of the paper does not support your views, but also indicates an ulterior motive.


How does it not support my views that there are large uncertainties that still need to be resolved with attributing ocean warming?


Because the paper does not indicate the "large uncertainties", but it does mention there are some uncertainties which are not related to the focus of the paper. You try to take that passing reference and create something out of it by expanding the statement according to your beliefs.

_________________
With friends like Guido, you will not have enemies for long.

“Intellect is invisible to the man who has none”
Arthur Schopenhauer


"The difference between genius and stupidity is that genius has its limits."
Albert Einstein


Top
 Profile  
 
PostPosted: Sun May 27, 2012 4:52 pm 
Offline
EnviroLink Volunteer
EnviroLink Volunteer
User avatar

Joined: Thu Jun 26, 2003 10:45 pm
Posts: 20531
Location: Southeastern US
Snowy123 wrote:
Wayne Stollings wrote:
It says it could not confirm the level of contribution of GCRs due to the results of this experiment, which leaves your expansion clearly unsupported by science. Your focus on uncertainty is oddly missing in the papers with which you wish to agree. The level of particle formation was weak at best, yet you ignore that fact and proceed as if it showed a high level of impact.


No, it confirmed that GCRs produce particles which could lead to CCNs (though the authors say it's uncertain to what degree). The experimental results are too ambiguous though to quantify the degree of the GCR-influence on climate, making it a HIGH uncertainty, and leading the objective researcher to question the IPCC's conclusions that most of climate change after 1950 was due to anthropogenic greenhouse gases, because of this high uncertainty.

"The present results, while suggestive, are insufficient to
unambiguously establish an effect of galactic cosmic rays on...climate, or to reach
reliable quantitative estimates of such effects (Kazil et al.,
2006; Yu et al., 2008; Pierce and Adams, 2009). The uncertainties
largely stem from poorly-known aerosol nucleation
and growth rates into cloud condensation nuclei (CCN)."


The CERN statements were very clear in the LACK of signifcant particle based formation in relation to that required to have any signficant impact on the cloud production or climate. The older uncertainites are now supported by actual experimental data.

_________________
With friends like Guido, you will not have enemies for long.

“Intellect is invisible to the man who has none”
Arthur Schopenhauer


"The difference between genius and stupidity is that genius has its limits."
Albert Einstein


Top
 Profile  
 
PostPosted: Sun May 27, 2012 4:54 pm 
Offline
EnviroLink Volunteer
EnviroLink Volunteer
User avatar

Joined: Thu Jun 26, 2003 10:45 pm
Posts: 20531
Location: Southeastern US
Snowy123 wrote:
Wayne Stollings wrote:
Yet solar output is relatively steady and has not tracked the temperature increases.


I assume that you are talking about over the last 40 years because of the PMOD/ACRIM controversy.

ACRIM shows a statistically significant increase in TSI from 1986-1996, IRMB shows a statistically insignificant increase, and PMOD does not, making attribution very difficult.

Fortunately, there are other variables that we can use to quantify what the sun was doing over the last 40 years.

Solar Cycle 22 ran more solar flux than solar cycle 21 did:

Image

Solar Cycle 22 was also shorter than Solar Cycle 21:

Image

GCRs also reached an all time record low in 1992, (even lower than Solar Cycle 19, which had an all time high in the SSN) supporting increased solar activity during the late-20th Century.

Image



No, I was also including the sunspot cycle data and all of the other solar indicator research.

_________________
With friends like Guido, you will not have enemies for long.

“Intellect is invisible to the man who has none”
Arthur Schopenhauer


"The difference between genius and stupidity is that genius has its limits."
Albert Einstein


Top
 Profile  
 
PostPosted: Sun May 27, 2012 6:01 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Wayne Stollings wrote:
Snowy123 wrote:
Wayne Stollings wrote:
The "expansion" of what the paper actually said on a subject not covered by the focus of the paper does not support your views, but also indicates an ulterior motive.


How does it not support my views that there are large uncertainties that still need to be resolved with attributing ocean warming?


Because the paper does not indicate the "large uncertainties", but it does mention there are some uncertainties which are not related to the focus of the paper. You try to take that passing reference and create something out of it by expanding the statement according to your beliefs.


The paper says "at least some," which indicates that natural factors causing most of the warming is also a possibility. I define some as being 1-49%, and "most" being 51-99%. Being that there is a large difference between 1% and 99%, that's why I labeled it as a high uncertainty.

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
PostPosted: Sun May 27, 2012 6:38 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Wayne Stollings wrote:
The CERN statements were very clear in the LACK of signifcant particle based formation in relation to that required to have any signficant impact on the cloud production or climate. The older uncertainites are now supported by actual experimental data.


Heh?

Here is what the abstract of the CERN paper says:

Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5, 6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
PostPosted: Sun May 27, 2012 6:44 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Wayne Stollings wrote:

No, I was also including the sunspot cycle data and all of the other solar indicator research.


Sunspots are a poor index of solar activity, since they only account for part of the solar activity. A more suitable index would be the geomagnetic AA Index, since it accounts for all of the solar activity.

Georgieva et. al 2005...

Solar activity, together with human activity, is considered a possible factor for
the global warming observed in the last century. However, in the last decades solar activity
has remained more or less constant while surface air temperature has continued to increase,
which is interpreted as an evidence that in this period human activity is the main factor for
global warming.We show that the index commonly used for quantifying long-term changes
in solar activity, the sunspot number, accounts for only one part of solar activity and using
this index leads to the underestimation of the role of solar activity in the global warming
in the recent decades.
A more suitable index is the geomagnetic activity which reflects all
solar activity, and it is highly correlated to global temperature variations in the whole period
for which we have data

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
PostPosted: Sun May 27, 2012 9:46 pm 
Offline
EnviroLink Volunteer
EnviroLink Volunteer
User avatar

Joined: Thu Jun 26, 2003 10:45 pm
Posts: 20531
Location: Southeastern US
Wayne Stollings wrote:
Snowy123 wrote:
Wayne Stollings wrote:
The "expansion" of what the paper actually said on a subject not covered by the focus of the paper does not support your views, but also indicates an ulterior motive.


How does it not support my views that there are large uncertainties that still need to be resolved with attributing ocean warming?


Because the paper does not indicate the "large uncertainties", but it does mention there are some uncertainties which are not related to the focus of the paper. You try to take that passing reference and create something out of it by expanding the statement according to your beliefs.


Snowy123 wrote:
The paper says "at least some," which indicates that natural factors causing most of the warming is also a possibility. I define some as being 1-49%, and "most" being 51-99%. Being that there is a large difference between 1% and 99%, that's why I labeled it as a high uncertainty.



That is the type of clear misrepresentation of a paper we see in sites like the CO2 Science crap. Your interpretation of what you would like for the paper to say is not what the paper states irregardless of how much you want it.

If I were to use the actual quote and your criteria on how to determine the definition of "most" the paper would, in your opinion, state most of the warming was due to human causes.

Given these and other misrepresentations of natural oceanic variability on decadal scales (e.g., Zhang and McPhaden 2006), a role for natural causes of at least some of the recent oceanic warming should not be ruled out.

Natural could be less than 1% or less than 50% in your interpretation, but clearly not the "highly" uncertain level you interpret ... unles you mean by highly uncertain as being whether you think it is closer to 1% or 50%.

_________________
With friends like Guido, you will not have enemies for long.

“Intellect is invisible to the man who has none”
Arthur Schopenhauer


"The difference between genius and stupidity is that genius has its limits."
Albert Einstein


Top
 Profile  
 
PostPosted: Sun May 27, 2012 10:11 pm 
Offline
EnviroLink Volunteer
EnviroLink Volunteer
User avatar

Joined: Thu Jun 26, 2003 10:45 pm
Posts: 20531
Location: Southeastern US
Snowy123 wrote:
Wayne Stollings wrote:
The CERN statements were very clear in the LACK of signifcant particle based formation in relation to that required to have any signficant impact on the cloud production or climate. The older uncertainites are now supported by actual experimental data.


Heh?

Here is what the abstract of the CERN paper says:

Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5, 6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.


One just needs to read all of the abstract and understand what it is stating.

The rest of the story revolves around the differecnes in the size of the nuclei produced and that required for cloud formation.

_________________
With friends like Guido, you will not have enemies for long.

“Intellect is invisible to the man who has none”
Arthur Schopenhauer


"The difference between genius and stupidity is that genius has its limits."
Albert Einstein


Top
 Profile  
 
PostPosted: Sun May 27, 2012 10:12 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Wayne Stollings wrote:

Given these and other misrepresentations of natural oceanic variability on decadal scales (e.g., Zhang and McPhaden 2006), a role for natural causes of at least some of the recent oceanic warming should not be ruled out.



"At least" meaning at the bare minimum, so it is possible that the contribution of natural causes is higher than 'some' but could be 'most' of the warming observed, indicating a high amount of uncertainty.

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
PostPosted: Sun May 27, 2012 10:13 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Wayne Stollings wrote:
Snowy123 wrote:
Wayne Stollings wrote:
The CERN statements were very clear in the LACK of signifcant particle based formation in relation to that required to have any signficant impact on the cloud production or climate. The older uncertainites are now supported by actual experimental data.


Heh?

Here is what the abstract of the CERN paper says:

Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5, 6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.


One just needs to read all of the abstract and understand what it is stating.


What does ammonia and sulfuric acid have to do with the effect from GCRs?

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
PostPosted: Sun May 27, 2012 10:16 pm 
Offline
EnviroLink Volunteer
EnviroLink Volunteer
User avatar

Joined: Thu Jun 26, 2003 10:45 pm
Posts: 20531
Location: Southeastern US
Wayne Stollings wrote:
Snowy123 wrote:
Wayne Stollings wrote:
The CERN statements were very clear in the LACK of signifcant particle based formation in relation to that required to have any signficant impact on the cloud production or climate. The older uncertainites are now supported by actual experimental data.


Heh?

Here is what the abstract of the CERN paper says:

Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5, 6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.


One just needs to read all of the abstract and understand what it is stating.


Snowy123 wrote:
What does ammonia and sulfuric acid have to do with the effect from GCRs?


They increased the numbers of nuclei produced by a significant amount but still not enough to account for the observed levels in nature.

_________________
With friends like Guido, you will not have enemies for long.

“Intellect is invisible to the man who has none”
Arthur Schopenhauer


"The difference between genius and stupidity is that genius has its limits."
Albert Einstein


Top
 Profile  
 
PostPosted: Sun May 27, 2012 10:18 pm 
Offline
Member with 500 Posts!
Member with 500 Posts!
User avatar

Joined: Sun May 29, 2011 7:48 am
Posts: 524
Ion-induced nucleation [cosmic ray action] will manifest itself as a steady production of new particles [molecular clusters] that is difficult to isolate in atmospheric observations because of other sources of variability but is nevertheless taking place and could be quite large when averaged globally over the troposphere [the lower atmosphere].”

Is from the full paper.

_________________
~Snowy123; Amateur Meteorologist and Climatologist.


Top
 Profile  
 
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 155 posts ]  Go to page Previous  1, 2, 3, 4, 5, 6, 7, 8 ... 11  Next

All times are UTC - 5 hours [ DST ]


Who is online

Users browsing this forum: No registered users and 3 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum

Jump to:  
Powered by phpBB® Forum Software © phpBB Group