EnviroLink Forum

Community • Ecology • Connection
It is currently Thu Jul 24, 2014 4:04 pm

All times are UTC - 5 hours [ DST ]




Post new topic Reply to topic  [ 8 posts ] 
Author Message
 Post subject: Energy storage
PostPosted: Fri Mar 23, 2012 1:58 pm 
Offline
Member with over 1000 posts!
Member with over 1000 posts!
User avatar

Joined: Tue Apr 18, 2006 2:09 pm
Posts: 1649
Location: Regina, Saskatchewan, Canada
I have concentrated on storage since I was a little kid wanting power tree forts and go-karts. As I got interested in independent living (my dad thinking of building on a lot on the north side of a hill with tall trees all around off the property... no solar, no grid, no wind) energy storage became far more important and large scale (both in volume and in length of storage cycles). As everyone seemed to think solar and wind would solve all our energy needs, I knew they were missing the most important piece of the puzzle...matching energy production cycles to energy use cycles. Now as energy experts are actually being asked to design a better grid (rather then just politicians and tree huggers looking for a greener world), the governments are finally realizing they need storage and am starting to put development moneys into that stuff. Here are some of the categorizes involved so I can point out the glaring omission most people make when discussing this topic.

The grid itself has three restrictions to worry about: 1) the average use is restricted to a certain amperage based on the temperature of the air because the wire gets hot and expands and then sags closer to the ground. 2) Electricity flowing through a wire has inertia (called inductance) that increases as the wire gets longer. This means sudden changes in the load (use) or source of the electricity will change the voltage in the part of the grid where the changes occur. These voltage spikes such as when a power line is shut off when struck my lightning can ripple through the system causing other lines to react as if they have been hit by lightning too and shut off themselves making their own voltage spikes and brownouts (drop in voltage). 3) AC power (changes direction constantly but is needed to make transformers work that change the voltage) has different peaks for the voltage as for the amperage based on the types of equipment adding or removing energy from the grid. As these two get further out of phase with each other, the less energy is able to move through the grid and the less efficient that energy transfer is. To clean up this out-of-phase power, they can increase the voltage or just add more clean energy sources (such as fuel-powered energy).

The restriction #1 means the grid must be over-sized to handle air-conditioner load on the hottest days of the summer during the supper-time peak load. To keep this over-sizing to a minimum, energy needs to be stored close to the users of the electricity or increasingly the demand is filled by fuel-powered generating stations built in the middle of cities. Electronic meters are helping by making peak load power more expensive so big buildings and industrial power users incorporate private measures to reduce their use at peak times. One method is to run cooling equipment at night to freeze a very large tank of water with cheap electricity then cool the building through the day with this stored coldness (termed "coolth"). If you plot the energy use cycle with the solar production cycle, you get an area where they do not match. That area is proportional to the amount of energy that needs to be stored for a 100% solar system (from an electrical grid standpoint). To minimize the size of the grid between the industrial-sized solar energy production facilities and the people/industry using the power, storage is best done close to the users in the proportion of that shift mentioned above. For the base amount of energy, the smallest amount used during the daily cycles, it is best stored at the source of the energy to level out the times when clouds pass over the solar production or at night. When combined with the charging of the other storage near the users, it becomes the average energy use over the night time which needs to be sized for the longest nights in the coldest part of the year. I have not mentioned wind because it is not able to be predicted like with solar. To fix wind's unpredictability, storage needs to be close to the windmills and used to cover that average use profile on the source side of the grid.

The types of storage have different purposes. Batteries can react quickly to fix voltage spikes and brown-outs but are not fast enough for some of the energy fluctuations you might see with large scale wind power. Capacitors are like batteries but can react faster. The problems with both batteries and capacitors is they rely on expensive electronics to make AC power as they are DC (direct current... does not change direction) devices. Batteries and capacitors are rather expensive for the amount of storage and can only be charged and discharged a limited number of times before needing replacement. Flywheels can store energy directly from the AC and thus fix phase problems and instantly react to spikes and brown-outs. The problem with flywheels is they lose energy to friction so require new methods of friction-free pivots and extreme vacuum environment. Flywheels are also big, heavy and thus limited on volume of stored energy. For volume, two storage forms are usually only listed: hydroelectric and pneumatic. Not only can dams be used to provide peak power but excess energy can be used to pump water to an elevated location to be used later. This has low cost for volume but generally cannot be located near cities so is restricted to the size of the grid between the storage and the use. Matching such storage with wind or solar facilities might work. The biggest restriction is environmentalists concerns for wildlife and people's use of bodies of water for real estate and recreation. Pneumatic storage is using underground caverns to store high pressure air. This pressure can be piped a bit to put the electricity generation closer to the users and the sources of energy further from these underground caverns. Pneumatic storage is probably the cheapest per volume but is quite restricted by the locations of suitable caverns (usually depleted natural gas and oil deposits and retired mines). New concerns are also arising from water contamination from leaks moving oil and natural gas around often many miles from the cavern location. Some scientists suspect the stresses on the caverns has been the trigger of earthquakes. The often overlooked storage option for cheap-per-volume storage is thermal. Most large scale solar power facilities use oil or liquid salts to gather the solar heat then use that hot liquid to create steam and power a turbine with that (exactly the same as if they are burning a fuel to make the steam). It becomes obvious then to store that heat to both account for clouds during the day and to continue producing electricity into the supper-time peak only a few hours later then the solar peak. Several solar facilities are doing exactly this but they are still not doing it the way I think should be done. They usually have two tanks to hold the hot liquid and the "used" liquid (cooled while making steam). Some use a single tank and stratify the tank meaning they have different temperatures as you move up and down in the tank. Tanks are expensive and prone to damage and require insulation around the whole tank. Dirt and clay are used to make the few materials used to make high temperature kilns so can handle way more heat then is needed to make dry steam (steam without water droplets as is needed for efficient turbines). If you are making a large heat storage area of soil, you just have to keep water out of it and only have to insulate the top surface... if that. Dirt also acts as an insulator and if you already have a fenced-off area for hot parabolic solar collection mirrors and pipes, a sterile and hot ground surface is acceptable. I have only found one facility that is doing something like this and they encased the pipes with concrete for some reason (no explanation provided in the detailed engineering notes found on the internet). I also want to explore the idea of wind power used to make heat directly and store it for steam production for a steady power source no matter how unreliable the wind speed. Note that a few wind projects are now using DC generators and batteries within the windmill tower then using grid-tie electronics designed for solar systems.

The other option for fixing the grid is to use it less. Grid-tied solar panels on homes means the grid only needs to shift the peak source to the peak use and this is best accomplished with energy storage close to the users. While we are still using lots of natural gas for electricity production, the idea of generating both heat and electricity within the home using natural gas makes a lot of sense. For the life span of such equipment (say about 50 years), we are unlikely to stop natural gas use completely before then. People already find battery-operated equipment and tools to be convenient so it is just a matter of using timers and electronic metering to move that energy use for battery charging to off-peak times. People prefer radiant heat and some new electric heaters are now designed to heat up a heat storage during off-peak times then radiate that stored heat through the rest of the day. Grid companies can encourage the use of such devices. New phase-change materials are being developed to add to the drywall material to store heat and cool in the walls. Heat pumps are good at maximizing the heat or cool produced from the same electrical energy but there are few systems who are designed to store that heat and cool to be able to run the heat pump in off-peak times. Of course good insulation, air-tightness, heat exchangers for fresh air, and better windows and doors (including "low-E" surfaces) can reduce or eliminate the need for heating and cooling or allow the programmable thermostat to not use expensive peak electricity. I am going to explore using a low voltage battery system at the location of LED lights and electronic controls for motion-sensing. The battery will then be trickle-charged for very low amperage use of the 120VAC wiring (and in my case only charged when the sun is shining on my solar panels). Electrically Commuted Motors (ECM) use only enough energy to get the job done so are much more efficient and can be used for continuous flow fans. With continuous flow, heating and cooling systems can be made smaller and thus more efficient. With some foresight, the system can be designed to be running only in off-peek times without getting noticeable before the peak time is over. This last paragraph can only be influenced with electronic metering and high peak-use rates but is also the only thing us consumers have control to do.

Note that this was going to be a short post and I got carried away


Top
 Profile  
 
 Post subject: Re: Energy storage
PostPosted: Fri Mar 23, 2012 3:01 pm 
Offline
Member with over 1000 posts!
Member with over 1000 posts!
User avatar

Joined: Tue Apr 18, 2006 2:09 pm
Posts: 1649
Location: Regina, Saskatchewan, Canada
I did forget an important topic that is getting a lot of attention: production of fuels or charged electrolyte from electricity or made directly from the solar energy (including via biological agents like algae used to make methanol). I always forget this aspect because it will be needed so badly for converting our transportation sector that requires light-weight energy storage found in chemical energy storage. This might also be used for grid storage and production but only after the transportation sector takes what they can as consumers adapt to the new technologies.


Top
 Profile  
 
 Post subject: Re: Energy storage
PostPosted: Mon Mar 26, 2012 12:38 pm 
Offline
Member with over 1000 posts!
Member with over 1000 posts!
User avatar

Joined: Wed Mar 02, 2005 12:59 am
Posts: 2238
Location: Central Colorado
Going solar is cheaper now by far than when I went off grid in '97. To me, the whole idea of the huge grid is wrong, a waste of money, and an incredible eyesore. Grid tie systems are more expensive, and you get ripped off by the power company.
Panels are cheaper at $1.85 or less. Good sinewave inverter/battery chargers are less expensive. The best thing for storage is now the more expensive but 25 year lasting NiFe batteries. I just changed my L-16 banks, and wish it were possible to fit the Iron Edison batteries into the same space. In my particular situation I custom built a shed with batteries on the bottom, vented and weather stripped from the compartment on top carrying inverters and the charge control center. It was designed around the size of the L 16 banks and inverters and power control center, which is narrower by 6 inches than I would need for the NiFe banks.
Those going solar now can take advantage of the lower prices on panels and sinewave inverter/chargers, and go with the long lasting NiFe battery banks. Of course, DIY is still mandatory if you want the system to pay for itself anytime soon.
http://ironedison.com/
In the case of local grids to get power from wind or tidal/wave generators, battery banks in individual houses and businesses could be used. In the case of small modular GenIV nuclear reactors, no battery storage would be needed for a mini-grid. The same for a mini-grid powered by a dam or steady tidal source.
Recycling of the materials used for the old tech super grid can eliminate the need for more mining and ore processing, with their CO2 emissions. The miners and ore processors would become recyclers instead. The steel could go to NiFe batteries. The copper, and aluminum could go for panels frames and mounts, or smaller turbine blades and housings, and the copper to new mini-grid wiring. The entire grid system going to independent systems or mini-grids, some needing storage capacity, some not. Emissions going to zero for power generation in the world.

_________________
"With every decision, think seven generations ahead of the consequences of your actions" Ute rule of life.
“We do not inherit the earth from our ancestors; we borrow it from our children”― Chief Seattle
“Those Who Have the Privilege to Know Have the Duty to Act”…Albert Einstein


Top
 Profile  
 
 Post subject: Re: Energy storage
PostPosted: Mon Mar 26, 2012 4:18 pm 
Offline
Member with over 1000 posts!
Member with over 1000 posts!
User avatar

Joined: Tue Apr 18, 2006 2:09 pm
Posts: 1649
Location: Regina, Saskatchewan, Canada
Johhny Electriglide wrote:
To me, the whole idea of the huge grid is wrong, a waste of money, and an incredible eyesore. Grid tie systems are more expensive, and you get ripped off by the power company.
I very much agree but of course it is hard to convince more then one or two percent of people to change the way they live unless it is tied to some form of entertainment. I posted that long rant mostly because I think every home should have it's own energy storage (and not just batteries) but only now are governments around the globe starting to look at R and D funding connected to storage methods. This is all good but they still leave out what (to me) is the most logical form to store energy as... heat. I am sorry to predict that the grid will be with us long into the future... but I will not be connected and will write books to help others join us in the energy independence revolution.


Top
 Profile  
 
 Post subject: Re: Energy storage
PostPosted: Wed Mar 28, 2012 12:19 pm 
Offline
Member with over 1000 posts!
Member with over 1000 posts!
User avatar

Joined: Wed Mar 02, 2005 12:59 am
Posts: 2238
Location: Central Colorado
I sure wish these were available when I started off-grid!


In February, Nuts and Volts magazine published an article about the Nickel Iron battery called "The Battery That Wouldn't Die" by Walter Noon III. The first part of the article presents some positive characteristics of the battery chemistry. Noon explains how Nickel Iron batteries can be charged and discharged without harm, how they have low materials toxicity, and how the cell does not break down chemically over time. The second half of the article actually gives step by step instructions on how to build your own small Nickel Iron test cell at home!

According to Noon, "Like many overlooked gems throughout the history of engineering, perhaps these "diamonds in the rough" deserve a second look and some thoughts as to how our present technology could be improved by examining the principles of their operation. Many times historically these cells have been referred to as "the battery that worked too well." Though they were popular and profitable in niche markets for Edison, it has been said that a business model could never be created for the general public that does not require replacement. However, these days where "going green" is more than a quaint idea, perhaps Edison's idea has finally found its time."

Of course, storing heat energy is a different ball game. It can be thermal mass like in an Earthship, or water columns, or rock walls. I have seen geothermal to heat exchangers and flooded basements with water circulation from a solar heated section.
Then there is the use of super insulation like in straw bale construction or use as an insulator. The foam blocks and thick foam sheets. Rammed earth, too.
Existing houses can have super insulation added. Sun rooms with trombe (mass) walls to cut heating bills. Adding solar panels to their roofs and a battery/inverter system to cut on power bills, too.
The new issue of Mother Earth news shows how the cost of solar power has gone down a whopping 40% in the past two years. This makes it more feasible farther north.

_________________
"With every decision, think seven generations ahead of the consequences of your actions" Ute rule of life.
“We do not inherit the earth from our ancestors; we borrow it from our children”― Chief Seattle
“Those Who Have the Privilege to Know Have the Duty to Act”…Albert Einstein


Top
 Profile  
 
 Post subject: Re: Energy storage
PostPosted: Wed Mar 28, 2012 9:23 pm 
Offline
Member with over 1000 posts!
Member with over 1000 posts!
User avatar

Joined: Tue Apr 18, 2006 2:09 pm
Posts: 1649
Location: Regina, Saskatchewan, Canada
Johhny Electriglide wrote:
...Nuts and Volts magazine published an article about the Nickel Iron battery... and how the cell does not break down chemically over time...

cool. Also note that many of the great new ideas incorporated into lead-acid batteries in the last few years could possibly apply to Nickel-Iron batteries too (depending on chemistry involved).
Johhny Electriglide wrote:
storing heat energy is a different ball game. It can be thermal mass like in an Earthship, or water columns, or rock walls. I have seen geothermal to heat exchangers and [liquid heat storage]... trombe (mass) walls
The difference is trying to store heat at temperatures for dry steam (about 240 degrees F minimum) to power very small turbines and also storing the lower temperature side of the turbine (slightly above room temperature) for heating purposes. This could be done in small amounts below homes or done on an industrial scale with solar farms. The turbines can also power heat pumps to store specific temperatures of heat and air pumps to store pneumatic energy to run things like fans. The key is... designing the house according to the cycles of source heat (or coolth) and needs for heat (or coolth). If the change in daily cycles is 5 hours, then there needs to be daily storage of a particular amount of heat or coolth that is delayed by that 5 hours. If the annual cycles are shifted 5 months, there needs to be a certain amount of heat stored and then used 5 months later (could be delayed by a certain distance of soil or just by using active systems). Trombe walls are a classic example of delayed storage if the thickness of the wall has been designed correctly. I want to use drywall as such delaying storage by heating the inside of the wall during the day to have that heat radiated into the room a few hours later when it is wanted most. (or night-time coolth radiated in the afternoon)
Johhny Electriglide wrote:
Then there is the use of super insulation like in straw bale construction or use as an insulator. The foam blocks and thick foam sheets. Rammed earth, too. Existing houses can have super insulation added
Super-insulation, air-tightness, and high efficiency heat exchangers for fresh air can effectively eliminate heating and cooling needs or reduce them to such an extent that the solar can be passive even in the far north. Of course you balance the costs of insulation with the costs of the heating equipment (including operating costs over the life-span or mortgage of the building) to find the most cost effective solution for that particular building.


Top
 Profile  
 
 Post subject: Re: Energy storage
PostPosted: Tue Apr 03, 2012 4:42 am 
Offline
New User
New User

Joined: Sun Apr 01, 2012 4:32 am
Posts: 5
saving and storing energy is a great issue right now. in my office we all use solar energy run keyboards. it is our step towards helping save the earth.


Top
 Profile  
 
 Post subject: Re: Energy storage
PostPosted: Thu Apr 05, 2012 6:09 am 
Offline
New User
New User

Joined: Fri Feb 03, 2012 5:51 am
Posts: 30
Environmental issues due to global warming and the other problems associated with fossil fuels, I think everyone must switch to renewable energy sources like sunlight, wind, and bio gas.As with conventional energy production, there are environmental issues to be considered.


Top
 Profile  
 
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 8 posts ] 

All times are UTC - 5 hours [ DST ]


Who is online

Users browsing this forum: No registered users and 5 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum

Jump to:  
Powered by phpBB® Forum Software © phpBB Group